TIF21-22-45

Graphical Visualization Engineering

Teknik Visualisasi Grafis

BASIC INFORMATION

Course Credit	3 / 150 minutes per Week
Course Type	Required
Course Classification	Engineering Topics
Prerequisites	Enter Prerequisite

STUDENT AND LEARNING OUTCOMES

Covered Student Outcomes

Fundamental and Engineering Knowledge (a)

Development of Engineering Solution (b)

Engineering Design (c) Modern Tools Utilization (e)

Learning Outcomes

- LO1 Students are able to design and visualize 2-D graphical objects.
- **LO2** Students are able to design and visualize 3-D graphical objects.
- **LO3** Students are able to use OpenGL as one of the tools for designing 2-D and 3-D graphical objects.
- **LO4** Students are able to use tools for designing the lighting process of an object in creating a realistic visualization of 3-D objects.

COURSE DESCRIPTION

This course learn the basic concepts of graphical math and its relation in designing realistic graphical objects by considering lighting and shadow models.

TOPICS

- 1. Basic mathematical graphics
- 2. 2-Dimensional graphics transformation

- 3. 3-Dimensional graphical transformation
- 4. Graphics Programming with OpenGL
- 5. Viewing and 3-Dimensional Projection
- 6. Lighting and Shading
- 7. Ray-Tracing Concept

REFERENCES

- [1] Govil-Pai, Shalini, *Principles of Computer Graphics: Theory and Practice Using OpenGL and Maya*, Springer Science+Business Media, Inc., 2004.
- [2] Edward Angel, David Shreiner, Interactive Computer Graphics: A Top-down Approach With Shader-Based OpenGL, Pearson Education, Inc., publishing as Addison-Wesley, 2012.
- [3] Hill, F.S, Jr., Stephen M. Kelley Jr, Computer Graphics Using OpenGL, Pearson Education Inc., 2007.
- [4] Shreiner Dave , OpenGL Programming Guide, Addison-Wesley, Pearson Education Inc., 2010.